Abstract:Image-to-image relighting requires representations that disentangle scene properties from illumination. Recent methods rely on latent intrinsic representations but remain under-constrained and often fail on challenging materials such as metal and glass. A natural hypothesis is that stronger pretrained visual priors should resolve these failures. We find the opposite: features from top-performing semantic encoders often degrade relighting quality, revealing a fundamental trade-off between semantic abstraction and photometric fidelity. We study this trade-off and introduce Augmented Latent Intrinsics (ALI), which balances semantic context and dense photometric structure by fusing features from a pixel-aligned visual encoder into a latent-intrinsic framework, together with a self-supervised refinement strategy to mitigate the scarcity of paired real-world data. Trained only on unlabeled real-world image pairs and paired with a dense, pixel-aligned visual prior, ALI achieves strong improvements in relighting, with the largest gains on complex, specular materials. Project page: https:\\augmented-latent-intrinsics.github.io
Abstract:Flow matching is a scalable generative framework for characterizing continuous normalizing flows with wide-range applications. However, current state-of-the-art methods are not well-suited for modeling dynamical systems, as they construct conditional paths using linear interpolants that may not capture the underlying state evolution, especially when learning higher-order dynamics from irregular sampled observations. Constructing unified paths that satisfy multi-marginal constraints across observations is challenging, since naïve higher-order polynomials tend to be unstable and oscillatory. We introduce SplineFlow, a theoretically grounded flow matching algorithm that jointly models conditional paths across observations via B-spline interpolation. Specifically, SplineFlow exploits the smoothness and stability of B-spline bases to learn the complex underlying dynamics in a structured manner while ensuring the multi-marginal requirements are met. Comprehensive experiments across various deterministic and stochastic dynamical systems of varying complexity, as well as on cellular trajectory inference tasks, demonstrate the strong improvement of SplineFlow over existing baselines. Our code is available at: https://github.com/santanurathod/SplineFlow.
Abstract:Reinforcement Learning with Verifiable Rewards (RLVR) offers a robust mechanism for enhancing mathematical reasoning in large models. However, we identify a systematic lack of emphasis on more challenging questions in existing methods from both algorithmic and data perspectives, despite their importance for refining underdeveloped capabilities. Algorithmically, widely used Group Relative Policy Optimization (GRPO) suffers from an implicit imbalance where the magnitude of policy updates is lower for harder questions. Data-wise, augmentation approaches primarily rephrase questions to enhance diversity without systematically increasing intrinsic difficulty. To address these issues, we propose a two-dual MathForge framework to improve mathematical reasoning by targeting harder questions from both perspectives, which comprises a Difficulty-Aware Group Policy Optimization (DGPO) algorithm and a Multi-Aspect Question Reformulation (MQR) strategy. Specifically, DGPO first rectifies the implicit imbalance in GRPO via difficulty-balanced group advantage estimation, and further prioritizes harder questions by difficulty-aware question-level weighting. Meanwhile, MQR reformulates questions across multiple aspects to increase difficulty while maintaining the original gold answer. Overall, MathForge forms a synergistic loop: MQR expands the data frontier, and DGPO effectively learns from the augmented data. Extensive experiments show that MathForge significantly outperforms existing methods on various mathematical reasoning tasks. The code and augmented data are all available at https://github.com/AMAP-ML/MathForge.
Abstract:In-context learning (ICL) has proven highly effective across diverse large language model (LLM) tasks. However, its potential for enhancing tasks that demand step-by-step logical deduction, such as mathematical reasoning, remains underexplored. A core limitation of existing ICL approaches is their static use of demonstrations: examples are pre-selected before inference and remain fixed, failing to adapt to the dynamic confusion points that often arise during multi-step reasoning such as ambiguous calculations or logical gaps. These unresolved confusion points can lead to cascading errors that degrade final accuracy. To tackle this issue, we propose Process In-Context Learning (PICL), a dynamic demonstration integration framework designed to boost mathematical reasoning by responding to real-time inference needs. PICL operates in two stages: 1)~it identifies potential confusion points by analyzing semantics and entropy in the reasoning process and summarizes their core characteristics; 2)~upon encountering these points, it retrieves relevant demonstrations from the demonstration pool that match the confusion context and inserts them directly into the ongoing reasoning process to guide subsequent steps. Experiments show that PICL outperforms baseline methods by mitigating mid-inference confusion, highlighting the value of adaptive demonstration insertion in complex mathematical reasoning.
Abstract:Personalized large language models (LLMs) adapt model behavior to individual users to enhance user satisfaction, yet personalization can inadvertently distort factual reasoning. We show that when personalized LLMs face factual queries, there exists a phenomenon where the model generates answers aligned with a user's prior history rather than the objective truth, resulting in personalization-induced hallucinations that degrade factual reliability and may propagate incorrect beliefs, due to representational entanglement between personalization and factual representations. To address this issue, we propose Factuality-Preserving Personalized Steering (FPPS), a lightweight inference-time approach that mitigates personalization-induced factual distortions while preserving personalized behavior. We further introduce PFQABench, the first benchmark designed to jointly evaluate factual and personalized question answering under personalization. Experiments across multiple LLM backbones and personalization methods show that FPPS substantially improves factual accuracy while maintaining personalized performance.
Abstract:Large language models (LLMs) demonstrate remarkable capabilities in natural language understanding and generation. Despite being trained on large-scale, high-quality data, LLMs still fail to outperform traditional static analysis tools in specialized domains like smart contract vulnerability detection. To address this issue, this paper proposes a post-training algorithm based on atomic task decomposition and fusion. This algorithm aims to achieve combinatorial generalization under limited data by decomposing complex reasoning tasks. Specifically, we decompose the reentrancy vulnerability detection task into four linearly independent atomic tasks: identifying external calls, identifying state updates, identifying data dependencies between external calls and state updates, and determining their data flow order. These tasks form the core components of our approach. By training on synthetic datasets, we generate three compiler-verified datasets. We then employ the Slither tool to extract structural information from the control flow graph and data flow graph, which is used to fine-tune the LLM's adapter. Experimental results demonstrate that low-rank normalization fusion with the LoRA adapter improves the LLM's reentrancy vulnerability detection accuracy to 98.2%, surpassing state-of-the-art methods. On 31 real-world contracts, the algorithm achieves a 20% higher recall than traditional analysis tools.
Abstract:Embedding-based dense retrieval has become the cornerstone of many critical applications, where approximate nearest neighbor search (ANNS) queries are often combined with filters on labels such as dates and price ranges. Graph-based indexes achieve state-of-the-art performance on unfiltered ANNS but encounter connectivity breakdown on low-selectivity filtered queries, where qualifying vectors become sparse and the graph structure among them fragments. Recent research proposes specialized graph indexes that address this issue by expanding graph degree, which incurs prohibitively high construction costs. Given these inherent limitations of graph-based methods, we argue for a dual-index architecture and present Curator, a partition-based index that complements existing graph-based approaches for low-selectivity filtered ANNS. Curator builds specialized indexes for different labels within a shared clustering tree, where each index adapts to the distribution of its qualifying vectors to ensure efficient search while sharing structure to minimize memory overhead. The system also supports incremental updates and handles arbitrary complex predicates beyond single-label filters by efficiently constructing temporary indexes on the fly. Our evaluation demonstrates that integrating Curator with state-of-the-art graph indexes reduces low-selectivity query latency by up to 20.9x compared to pre-filtering fallback, while increasing construction time and memory footprint by only 5.5% and 4.3%, respectively.
Abstract:Query correction is a critical entry point in modern search pipelines, demanding high accuracy strictly within real-time latency constraints. Chain-of-Thought (CoT) reasoning improves accuracy but incurs prohibitive latency for real-time query correction. A potential solution is to output an answer before reasoning to reduce latency; however, under autoregressive decoding, the early answer is independent of subsequent reasoning, preventing the model from leveraging its reasoning capability to improve accuracy. To address this issue, we propose Sandwich Reasoning (SandwichR), a novel approach that explicitly aligns a fast initial answer with post-hoc reasoning, enabling low-latency query correction without sacrificing reasoning-aware accuracy. SandwichR follows an Answer-Reasoning-Answer paradigm, producing an initial correction, an explicit reasoning process, and a final refined correction. To align the initial answer with post-reasoning insights, we design a consistency-aware reinforcement learning (RL) strategy: a dedicated consistency reward enforces alignment between the initial and final corrections, while margin-based rejection sampling prioritizes borderline samples where reasoning drives the most impactful corrective gains. Additionally, we construct a high-quality query correction dataset, addressing the lack of specialized benchmarks for complex query correction. Experimental results demonstrate that SandwichR achieves SOTA accuracy comparable to standard CoT while delivering a 40-70% latency reduction, resolving the latency-accuracy trade-off in online search.
Abstract:Vision-language-action (VLA) models have enabled language-conditioned, long-horizon robot manipulation, but most existing systems are limited to grippers. Scaling VLA policies to bimanual robots with high degree-of-freedom (DoF) dexterous hands remains challenging due to the expanded action space, frequent hand-object occlusions, and the cost of collecting real-robot data. We present GR-Dexter, a holistic hardware-model-data framework for VLA-based generalist manipulation on a bimanual dexterous-hand robot. Our approach combines the design of a compact 21-DoF robotic hand, an intuitive bimanual teleoperation system for real-robot data collection, and a training recipe that leverages teleoperated robot trajectories together with large-scale vision-language and carefully curated cross-embodiment datasets. Across real-world evaluations spanning long-horizon everyday manipulation and generalizable pick-and-place, GR-Dexter achieves strong in-domain performance and improved robustness to unseen objects and unseen instructions. We hope GR-Dexter serves as a practical step toward generalist dexterous-hand robotic manipulation.
Abstract:As large language models (LLMs) are increasingly deployed, ensuring their safe use is paramount. Jailbreaking, adversarial prompts that bypass model alignment to trigger harmful outputs, present significant risks, with existing studies reporting high success rates in evading common LLMs. However, previous evaluations have focused solely on the models, neglecting the full deployment pipeline, which typically incorporates additional safety mechanisms like content moderation filters. To address this gap, we present the first systematic evaluation of jailbreak attacks targeting LLM safety alignment, assessing their success across the full inference pipeline, including both input and output filtering stages. Our findings yield two key insights: first, nearly all evaluated jailbreak techniques can be detected by at least one safety filter, suggesting that prior assessments may have overestimated the practical success of these attacks; second, while safety filters are effective in detection, there remains room to better balance recall and precision to further optimize protection and user experience. We highlight critical gaps and call for further refinement of detection accuracy and usability in LLM safety systems.